Home Advanced Materials Hybrid Fabrics Market Size, Share & Trends | Industry Report, 2033

Hybrid Fabrics Market Size & Outlook, 2025-2033

Hybrid Fabrics Market Size, Share & Trends Analysis Report By Fiber Type (Glass/Carbon, Carbon/Uhmwpe, Glass/Aramid, Carbon/Aramid, Others), By Application (Automotive, Aerospace & Defense, Wind Energy, Sports & Recreational Equipment, Others) and By Region(North America, Europe, APAC, Middle East and Africa, LATAM) Forecasts, 2025-2033

Report Code: SRAM3508DR
Last Updated : Jul, 2025
Pages : 110
Author : Anantika Sharma
Format : PDF, Excel

Hybrid Fabrics Market Size

The global hybrid fabrics market size was valued at USD 318.69 million in 2024 and is projected to reach from USD 346.42 million in 2025 to USD 675.21 million by 2033, growing at a CAGR of 8.7% during the forecast period (2025-2033).

Different types of fibers are combined to create hybrid fabrics. These fabrics are employed in various industrial settings, including the automotive, aerospace, maritime, and military. In addition to being more durable than metallic components and other fabrics, hybrid fabrics can lower the product's overall weight. The market is anticipated to grow as hybrid fabrics become more prevalent in lightweight aerospace, defense, and automotive applications.

Additionally, governments in various countries are promoting using natural fibers rather than synthetic ones. Hybrid fabrics' capacity to lighten the overall weight while boosting the tensile strength and stiffness of various structures, such as turbine blades and vehicles, will also contribute to the market's continued expansion. Using lightweight materials in cars and planes can increase fuel efficiency and allow for the speeds that sailboats and powerboats used for recreational purposes need.

Hybrid Fabrics Market Size

To get more insights about this report Download Free Sample Report


Hybrid Fabrics Market Growth Factors

Growing Importance of Lightweight Fabrics

A rise in inclination toward lightweight fabrics for industrial structures is expected to drive market growth. Conventional metals and alloys used for industrial applications increase the overall weight, thus, reducing the operational efficiency of the structure. Additionally, hybrid fabrics' capacity to lower overall weight and boost the tensile strength and stiffness of various structures, such as turbine blades and vehicles, will positively affect the market expansion.

Rise in Applications in Automotive and Aircraft

The automotive and aircraft market utilizes different types of hybrid fabrics to improve the fuel efficiency and speed of the structure. Adopting such hybrid fabrics improve compressive strength and aids in the reduction of vehicle weight to 40-60%. Hybrid fabrics used in aerospace & defense comprise carbon, glass, aramid, and epoxy fibers. Such hybrid fabrics are suitable for high-temperature applications and reduce the aircraft's overall weight, improving fuel efficiency. 

Market Restraint

High Cost of Carbon/aramid and Availability of Low-Cost Alternatives

The high cost of carbon/aramid and the availability of a wide range of alternatives may hamper the market growth for this segment. Carbon/aramid hybrid used for military and aerospace applications is costly compared to most other hybrid fabrics and alternatives. For instance, carbon and Kevlar aramid cost around $47.5/kg and $100/kg, respectively, whereas glass fiber costs around $4/KG. Other low-cost alternatives, such as jute and basalt fiber, may replace such hybrid fabrics for bulk applications.

Key Market Opportunities

Applications of Hybrid Fabrics as A Bioplastic

The trend toward renewable energy alternatives is anticipated to influence the hybrid fabrics market demand positively. This is attributed to the wide application of various hybrid fabrics in the rotor blades of wind turbines. Hybrid fabrics such as glass/carbon and glass/aramid are widely used as an alternative to pure carbon or glass fibers reducing overall weight by 50% in the turbine blades. The new development will provide lucrative opportunities in the market.


Regional Insights

Europe was the highest revenue contributor and is estimated to exhibit a CAGR of 7.5%. The European market comprises the UK, Germany, France, Spain, Italy, and the rest of Europe. Market demand in Europe is primarily driven by the presence of global players, such as DSM, Solvay SA, SGL Group, Gurit Holding AG, and Kordcarbon AS. The significant presence of hybrid fabric manufacturers offering a wide range of products is the primary factor influencing European market demand. In addition, a rise in concern from the European Commission on greenhouse gas emissions will further encourage the market growth for lightweight hybrid fabrics for automotive.

  • For instance, European Commission set a target to reduce the emission rate by up to 15% by 2025. Applying glass/carbon hybrid fabrics instead of steel can help reduce vehicle weight. Light-weight structural components are preferred to improve vehicle efficiency lowering the emission rate.

North America Hybrid Fabrics Market Trends

North America is the second largest region. It is anticipated to reach a predicted value of USD 190 million by 2031, growing at a CAGR of 9.4%. The North American hybrid fabrics market comprises the U.S., Canada, and Mexico. The market is driven by significant demand from the automotive and aerospace sectors. The U.S. is a significant automotive producer and is expected to witness robust growth in the upcoming period.

In addition, robust investment from the government into defense activities is expected to steer the market growth for the aerospace sector. Carbon and aramid hybrid fabric are preferred in aerospace for high-temperature applications to improve the compressive strength and the strain to failure at high temperatures.

North America accounted for a significant market share in the hybrid fabrics market, owing to an increase in demand for high-strength and lightweight fabrics in the automotive and aerospace sectors. In addition, the berry amendment act in the U.S. promotes the utilization of domestically produced, manufactured products, including various hybrid fabrics, thus, strengthening the local market growth. Furthermore, the growing application of glass/carbon hybrid fabrics in wind turbines to improve operational efficiency is expected to steer the market growth during the forecast timeframe.

Asia-Pacific is the third largest region. Asia-Pacific consists of China, India, Japan, South Korea, Australia, and the rest of Asia-pacific. China primarily dominates the market for hybrid fabrics due to massive demand for the automotive and aerospace sector. The growth of the hybrid fabrics market can be accredited to the shifting trend toward lightweight automobiles with high compressive and tensile strength. The Asia-Pacific hybrid fabrics market is expected to witness robust growth because of increasing disposable income and growing demand for battery electric vehicles.

A large part of Asia-Pacific consumers is shifting toward electric vehicles in China, Japan, South Korea, and India due to various greenhouse gas emission norms. Due to the massive weight of electric batteries and motors, unlike conventional automotive powertrains, industry players are investing in lightweight fabrics, which can improve fuel efficiency, thus, enhancing the market growth.


Fiber Type Insights

The global market is divided into glass/carbon, glass/aramid, carbon/Uhmwpe, carbon/aramid, and others. Glass/carbon dominated the market and is estimated to exhibit a CAGR of 7% during the forecast period. Carbon glass hybrid fabrics consist of carbon fiber, which provides excellent tensile strength and stiffness, and reduces the density of hybrid fabrics. The cost of these hybrid fabrics goes down because they have glass fiber. The tensile and compressive strain of such fabrics is higher than that of carbon/epoxy hybrid. .

Carbon glass hybrid fabrics exhibit enhanced properties, including better tensile strength and compressive strength than other carbon fibers. The glass fiber in the hybrid fabrics is less likely to fail than the carbon fibers, and a higher volume of glass fibers increases the strain at which the low-elongation carbon fibers fail, thus, making it suitable for automotive and aerospace applications.

  • For instance, carbon glass fiber showed improvements in failure strain, ranging between 10% and 31% for woven fibers. However, a massive increase in glass fiber contents in carbon glass hybrid fabrics can decrease the compressive strength of the fabrics. In addition, the lightweight of such hybrid fabrics is suitable for high-volume applications, including semi-structural automotive components and wind blades.

The glass/aramid segment is the second largest. Glass aramid consists of glass fibers and aramid fibers. Such fabrics exhibit low density, high impact resistance, and tensile strength due to the presence of aramid fibers. In addition, glass fiber reduces the overall cost and improves compressive strength. Using glass fiber/aramid hybrid fabrics, fuel efficiency and demand for increased speeds can be achieved for recreational power and sailboats.

Furthermore, hybrid fabrics have better compression than aramid fibers alone. The rise in preference for lightweight fabrics in transportation and marine is expected to drive the growth of glass aramid hybrid fabrics. The hybrid fabrics provide lighter, stronger, stiffer, and more durable parts, which are suitable for power boats and high-speed ferries.

In addition, lightweight fabrics improve fuel efficiency and speed, thus, enhancing market growth. Furthermore, unlike aramid fibers, such hybrid fabrics do not pick up moisture easily and provide enhanced compression properties. The carbon/Uhmwpe segment is the third largest. Ultrahigh molecular weight polyethylene (UHMWPE) fiber/carbon fiber hybrid fabrics consists of ultra-high molecular weight polyethylene (UHMWPE) fiber and carbon fiber. The bending, compressive, and interlaminar shear strength of hybrid fabrics are improved with such fabrics, which solely depend on carbon fiber content.

  • For instance, Dyneema fiber, a type of ultrahigh molecular weight polyethylene fiber, combined with carbon fiber can handle impact forces 50% to 100% better than carbon alone. The growing application of ultra-high molecular weight polyethylene (UHMWPE)/carbon hybrid fabrics, owing to their enhanced properties, including high flexibility and vibration resistance, is expected to steer the market growth. Hybrid fabrics formed with Dyneema fiber and carbon fiber are more ductile and shatterproof, whereas pure carbon shatters under excessive impact.

In addition, the tensile modulus and tensile strength can be improved with the application of carbon nanofibers, whereas higher content of carbon nanofibers can lead to deterioration in such properties. The improved performance of such hybrid fabrics in ballistic armor makes them widely applicable for military applications. The optimal amount of carbon fibers can boost the performance of hybrid fabrics. However, due to the high melt viscosity of the UHMWPE, the incorporation of carbon fibers in ultra-high molecular weight polyethylene is a big challenge.

Application Insights

The global market is categorized into automotive, wind energy, aerospace & defense, sports and recreational equipment, and others. The aerospace & defense segment was the highest contributor to the market and is anticipated to exhibit a CAGR of 8.5% during the forecast period. Hybrid fabrics used in aerospace & defense comprise carbon, glass, aramid, and epoxy fibers. Carbon/glass hybrid generally offers a low-cost material with specific properties. But it is suitable for low-temperature applications. For high-temperature applications, carbon and aramid fabric are preferred to improve the compressive strength and the strain to failure at high temperatures.

However, the high cost of Kevlar fiber is a big issue for manufacturers, which escalates the demand for low-cost alternatives such as glass/Kevlar hybrid fabrics. Due to the increase in demand for lightweight and high-strength fabrics for cabin components, rotor blades, avionics, tooling, brakes, and brake lining, hybrid fabrics are predicted to experience significant demand in the aerospace sector.

Additionally, a rise in government spending in the aerospace and defense industries will direct market expansion. The modernization of military and commercial aircraft is a significant area of government spending in the U.S., China, and India, fueling the hybrid fabrics market. Incorporating low-cost fiber in hybrid fabrics can reduce the overall cost and improve other properties, including impact resistance and fatigue resistance.

Furthermore, the development of new hybrid fabrics combining natural fibers such as jute, coconut, and bamboo could replace costly synthetic fibers, creating new market opportunities. The automotive segment is the second largest. The automotive segment utilizes different types of hybrid fabrics to improve the fuel efficiency and speed of the vehicles.

Adopting such hybrid fabrics improve compressive strength and aids in the reduction of vehicle weight to 40-60%. Industry players are coming with new composite fabrics such as FILAVATM fibers combined with 3K high tenacity (HT) carbon fibers (3K HT CARBON), which can be used in the automotive industry to solve weight reduction challenges and cost issues. This new hybrid fabric is highly sustainable and cost-effective compared to conventional carbon fibers. Growth in the prominence of lightweight vehicles for the commercial and military sectors is expected to steer the market growth for automotive. Lightweight is getting prominence due to its less energy consumption from vehicles.

In addition, a new imperative to tackle global warming issues have increased the demand for such hybrid fabrics to reduce vehicle emissions. For instance, the carbon and glass fiber hybrid fabrics are 40-60% lighter than steel parts of equal strength. Carbon and glass fiber hybrid is increasingly used to replace steel in the automotive industry. Furthermore, the carbon and glass fiber hybrid cost is relatively low compared to carbon fiber alone, thus enhancing its importance in the high-volume production for the automotive sector.


List of key players in Hybrid Fabrics Market

  1. DSM
  2. Solvay SA
  3. SGL Group
  4. Kordcarbon a.s.
  5. Gurit Holding AG
  6. Isomatex
  7. Textum Inc.
  8. BGF Industries Inc.
Hybrid Fabrics Market Share of Key Players

To get more findings about this report Download Market Share


Recent Developments

  • November 2022 - To maintain its position as a world leader, Solvay has announced plans to restart work on its 600 kT soda ash capacity expansion in Green River, Wyoming, USA. The start of production is anticipated for the end of 2024, just in time to meet the expanding demand from customers for a reliable source of supply that is also affordable.
  • November 2022 - Solvay launched today Reactsurf® 2490, a new APE-free1 polymerizable surfactant designed as a primary emulsifier for acrylic, vinyl-acrylic, and styrene-acrylic latex systems. Reactsurf® 2490 improves emulsion performance to deliver superior functional and aesthetic benefits in exterior coatings and pressure-sensitive adhesives (PSAs), compared to conventional surfactants, even at high temperatures.

Report Scope

Report Metric Details
Market Size in 2024 USD 318.69 Million
Market Size in 2025 USD 346.42 Million
Market Size in 2033 USD 675.21 Million
CAGR 8.7% (2025-2033)
Base Year for Estimation 2024
Historical Data2021-2023
Forecast Period2025-2033
Report Coverage Revenue Forecast, Competitive Landscape, Growth Factors, Environment & Regulatory Landscape and Trends
Segments Covered By Fiber Type, By Application, By Region.
Geographies Covered North America, Europe, APAC, Middle East and Africa, LATAM,
Countries Covered U.S., Canada, U.K., Germany, France, Spain, Italy, Russia, Nordic, Benelux, China, Korea, Japan, India, Australia, Taiwan, South East Asia, UAE, Turkey, Saudi Arabia, South Africa, Egypt, Nigeria, Brazil, Mexico, Argentina, Chile, Colombia,

Explore more data points, trends and opportunities Download Free Sample Report

Hybrid Fabrics Market Segmentations

By Fiber Type (2021-2033)

  • Glass/Carbon
  • Carbon/Uhmwpe
  • Glass/Aramid
  • Carbon/Aramid
  • Others

By Application (2021-2033)

  • Automotive
  • Aerospace & Defense
  • Wind Energy
  • Sports & Recreational Equipment
  • Others

By Region (2021-2033)

  • North America
  • Europe
  • APAC
  • Middle East and Africa
  • LATAM

Frequently Asked Questions (FAQs)

How large was the hybrid fabrics market in 2024?
In 2024, the hybrid fabrics market size was USD 318.69 million.
Straits Research predicts a CAGR of 8.7% for the hybrid fabrics market between 2025 and 2033.
The competitive landscape is characterized by the presence of established companies such as DSM, Solvay SA, SGL Group, Kordcarbon a.s., Gurit Holding AG, Isomatex, Textum Inc., BGF Industries Inc. and others, in addition to emerging firms.
In 2024, the hybrid fabrics market was dominated by Europe.
Trends such as Demand for sustainable and environment friendly products, Rapid industrialization and infrastructural developments and Growth in technological advancement and innovation are primary growth trends for the hybrid fabrics market.

Anantika Sharma
Research Practice Lead

Anantika Sharma is a research practice lead with 7+ years of experience in the food & beverage and consumer products sectors. She specializes in analyzing market trends, consumer behavior, and product innovation strategies. Anantika's leadership in research ensures actionable insights that enable brands to thrive in competitive markets. Her expertise bridges data analytics with strategic foresight, empowering stakeholders to make informed, growth-oriented decisions.

Speak To Analyst

Available for purchase with detailed segment data, forecasts, and regional insights.

Get This Report

Download Free Sample

Note: Please ensure you provide an active email address as we will be sending sample details via email.
The button will be active once the above form is filled

Our Clients:

LG Electronics
AMCAD Engineering
KOBE STEEL LTD.
Hindustan National Glass & Industries Limited
Voith Group
International Paper
Hansol Paper
Whirlpool Corporation
Sony
Samsung Electronics
Qualcomm
Google
Fiserv
Veto-Pharma
Nippon Becton Dickinson
Merck
Argon Medical Devices
Abbott
Ajinomoto
Denon
Doosan
Meiji Seika Kaisha Ltd
LG Chemicals
LCY chemical group
Bayer
Airrane
BASF
Toyota Industries
Nissan Motors
Neenah
Mitsubishi
Hyundai Motor Company
Request Sample Order Report Now

We are featured on :