Home Aerospace And Defense Aerospace Titanium Machining Market Size, Growth Graph & Share by 2033

Aerospace Titanium Machining Market Size, Share & Trends Analysis Report By Material Type (Titanium Alloys, Commercially Pure Titanium), By Applications (Structural Airframes, Engines, Others), By Manufacturing Process (Casting, Machining, Powder Metallurgy, Additive Manufacturing, Superplastic Forming (SPF), Others) and By Region(North America, Europe, APAC, Middle East and Africa, LATAM) Forecasts, 2025-2033

Report Code: SRAD55515DR
Last Updated : Nov 11, 2024
Author : Straits Research
Starting From
USD 1850
Buy Now

Aerospace Titanium Machining Market Size

The global aerospace titanium machining market size was valued at USD 3669.55 million in 2024 and is estimated to reach from USD 3919.08 million in 2025 to USD 6633.68 million by 2033, growing at a CAGR of 6.8% during the forecast period (2025–2033).

The flourishing aerospace sector increases the demand for commercial and military aircraft production that uses titanium as a fundamental element to produce aircraft components. This is expected to increase the demand for aerospace titanium machines, driving the global market. In addition, titanium is a stronger and lighter material, and its increasing use in aircraft manufacturing is because it improves fuel efficiency. This, in turn, augments the global market growth.

Aerospace titanium machining pertains to the procedure by which titanium components utilized within the aerospace sector are shaped and formed. The process of removing material from a workpiece to attain the intended shape and dimensions is known as machining. Several processes are utilized in titanium machining for aerospace applications, such as grinding, turning, milling, and cutting. These procedures fabricate landing gear, aircraft parts, engine components, and other critical elements of aerospace systems. Precision is of the utmost importance in aerospace applications, and machining processes must adhere to stringent quality standards and tolerances. Titanium is a precious metal; therefore, employing efficient machining techniques to reduce waste and keep production prices down is important. Aerospace titanium machining can be executed utilizing a range of technologies, encompassing conventional machining techniques and sophisticated technologies such as Computer Numerical Control (CNC) machining, which facilitates the mechanization of the manufacturing process and ensures exceptional precision.

Aerospace Titanium Machining Market

Aerospace Titanium Machining Market Growth Factors

Growing aerospace industry

The demand for aerospace-grade titanium components is influenced by the expansion of the aerospace industry, which is propelled by growing defense expenditure, expanding air travel, and emerging markets. For instance, as per the Stockholm International Peace Research Institute (SIPRI), global military expenditures reached a record-breaking USD 2.2 trillion in 2022. This marks the eighth consecutive year of growth in military budgets.

  • In addition, as per the International Air Transport Association (IATA), compared to July 2022, total traffic in July 2023 increased by 26.2%, as measured in revenue passenger kilometers or RPKs. Traffic has returned to pre-COVID levels by 95.6% on a global scale. Similarly, passenger demand is expected to reach pre-COVID-19 levels by 2024 in several major aviation markets worldwide.

Therefore, expanding the aerospace industry leads to the growing need for commercial and military aircraft worldwide, leading to increased production rates. This drives the demand for efficient titanium machining processes to meet production targets.

Increased use of titanium to produce lightweight aircraft

Titanium has an outstanding strength-to-weight ratio making it a popular choice for aircraft and spacecraft applications. An aircraft with a lower weight reduces the fuel needed to generate the required thrust for take-off and sustain the desired cruising speed. This results in the minimization of carbon emissions per unit of distance covered. As per the International Energy Agency (IEA), aviation contributed 2% of global energy-related CO2 emissions in 2022, surpassing rail, road, and shipping growth rates over the past few decades. Therefore, many regulatory bodies are taking initiatives to reduce this carbon emission.

  • For instance, in 2022, 184 International Civil Aviation Organization (ICAO) member states ratified a long-term global aspirational goal (LTAG) mandating that international aviation achieve net zero carbon emissions by 2050. Thus, a larger proportion of titanium is frequently used in modern aircraft designs to reduce total weight, increase fuel efficiency, and boost performance. This increased usage drives the need for advanced machining techniques, boosting market expansion.

Market Restraint

Complexity of working with titanium

Titanium machining in the aerospace industry is challenging due to the unique properties of titanium. Titanium is known for its high strength, low density, and excellent corrosion resistance, but it is also known for its low thermal conductivity and high chemical reactivity at elevated temperatures. These properties can make titanium difficult to machine, and specialized techniques and tools are often required. These properties of titanium are expected to restrict market growth over the forecast period.

Market Opportunity

Increasing research and development

Current research and development activities are dedicated to enhancing machining methods, tooling, and materials specifically for titanium, facilitating progress in the sector.

  • For instance, in July 2019, Spirit AeroSystems transferred laboratory-discovered innovations to its manufacturing facility. Spirit developed a novel technique, the Joule Form process, which entails forming titanium raw material at elevated temperatures to produce aerospace components.

Spirit can fabricate components from titanium plates using the Joule Form method instead of having to machine sizable titanium slabs. This results in a reduction of waste and machining. Joule Form technology applies to aircraft components machined from plates or forgings, particularly titanium and steel alloys, which are difficult to machine and costly to acquire. Therefore, a surge in R&D is expected to create opportunities for market growth.

Study Period 2021-2033 CAGR 6.8%
Historical Period 2021-2023 Forecast Period 2025-2033
Base Year 2024 Base Year Market Size USD 3669.55 million
Forecast Year 2033 Forecast Year Market Size USD 6633.68 million
Largest Market North America Fastest Growing Market Asia Pacific
Talk to us
If you have a specific query, feel free to ask our experts.

Regional Analysis

North america dominates the global market

North America is the most significant global aerospace titanium machining market shareholder and is estimated to expand substantially during the forecast period. The aerospace industry of the United States is the largest on a global scope. The aerospace and defense sector of the United States is responsible for producing both military and civil aircraft. Commercial aircraft production is the greatest subsegment of the aerospace and defense industry. It has close to 20,000 supplier companies. In 2022, the United States invested USD 877 billion in defense, accounting for over 40% of worldwide expenditures. This is expected to increase military aircraft production, boosting the aerospace titanium machining market.

Moreover, the key players in the aerospace industry are demanding titanium components and forming alliances to procure titanium components for their aircraft. For instance, in November 2022, Lockheed Martin recently granted a contract to Magellan Aerospace, a Canadian aerospace systems manufacturer, to provide machined titanium components intended for the F-35 Lightning II combat aircraft. The contractual agreement, which has a substantial monetary value, is deemed legally binding for the period spanning from 2023 to 2027. The agreement principally centers on providing shipments comprising machined wing tie bars for the aircraft's flap. The components will be produced and supplied for all three iterations of the F-35 combat aircraft. Such factors are expected to expedite the regional market expansion.

Asia-pacific: growing region

The Asia-Pacific region is growing at a substantial pace. The regional aerospace titanium machining market share is undergoing significant progress in developing titanium products, accompanied by a substantial increase in the need for aerospace titanium goods. In addition, the growing research and development in this field is further expected to boost the regional market expansion. For instance, A team of researchers affiliated with the Indian Institute of Technology (Bombay) is investigating several techniques to facilitate titanium's machining process using annealing.

Additionally, the region has the highest penetration rate of air travel worldwide. For instance, Asia-Pacific airline traffic increased by 98.5% in August 2023 compared to August 2022, as reported by IATA. This sustained the region's exceptionally positive momentum in the months preceding the removal of travel restrictions. While capacity increased by 85.5%, the load factor rose by 5.5 percentage points to 84.2%. The surge in air passenger traffic has been a direct catalyst for the regional demand for new aircraft deliveries. The anticipated increase in the quantity of newly manufactured aircraft will correspondingly heighten the need for titanium utilized in the fabrication of aircraft components. 

Need a Custom Report?

We can customize every report - free of charge - including purchasing stand-alone sections or country-level reports


Segmental Analysis

By material type

The global market is segmented into titanium alloys and commercially pure titanium. The titanium alloys segment is the largest contributor to the market. Titanium alloys are a category of metal alloys composed predominantly of titanium as the primary metal in varying proportions with additional elements, including aluminum, vanadium, iron, and others. Titanium alloys are suitable for aerospace because they retain their strength and mechanical properties at high temperatures. In addition, the fabrication of turbine blades for aircraft engines frequently employs titanium alloys. Owing to their exceptional strength, resistance to corrosion and heat, and suitability for the arduous environment of a jet engine, they are highly effective. Engine casings and other structural components of aircraft engines are also constructed from titanium. Such properties increase the use of titanium alloy in the aerospace industry, driving segment growth.

By application

The global market is bifurcated into structural airframes, engines, and others. The structural airframes segment dominates the global market. The structural airframe comprises many elements, including the empennage (tail section), fuselage, wings, and other structural components, which are purpose-built to bear and disperse the burdens encountered throughout the flight process. Weight reduction is the primary objective of a structural airframe, which concurrently ensures durability, stability, and strength. A structural airframe is meticulously crafted and assembled with weight, strength, and aerodynamic efficiency in mind. Engineers employ sophisticated materials, including titanium, to accomplish the intended structural characteristics of an aircraft while minimizing its overall mass. The structural airframe of an aerospace vehicle is vital to ensuring its efficacy and safety.

By manufacturing process

the global market is segmented into casting, powder metallurgy, machining, additive manufacturing, superplastic forming (SPF), and others. The casting segment is the highest contributor to the market. Casting is a prevalent manufacturing technique employed in the aerospace sector to fabricate intricately shaped metal components. The technique involves the introduction of molten metal into the cavity of a mold, followed by the subsequent solidification of the metal and the subsequent removal of the finished piece from the mold. In aerospace, casting is frequently utilized to generate complex shapes with desirable material properties. It is utilized to produce various aircraft and spacecraft components, including engine parts, airframe components, and other critical elements.

By material type

The global market is segmented into titanium alloys and commercially pure titanium. The titanium alloys segment is the largest contributor to the market. Titanium alloys are a category of metal alloys composed predominantly of titanium as the primary metal in varying proportions with additional elements, including aluminum, vanadium, iron, and others. Titanium alloys are suitable for aerospace because they retain their strength and mechanical properties at high temperatures. In addition, the fabrication of turbine blades for aircraft engines frequently employs titanium alloys. Owing to their exceptional strength, resistance to corrosion and heat, and suitability for the arduous environment of a jet engine, they are highly effective. Engine casings and other structural components of aircraft engines are also constructed from titanium. Such properties increase the use of titanium alloy in the aerospace industry, driving segment growth.

By application

The global market is bifurcated into structural airframes, engines, and others. The structural airframes segment dominates the global market. The structural airframe comprises many elements, including the empennage (tail section), fuselage, wings, and other structural components, which are purpose-built to bear and disperse the burdens encountered throughout the flight process. Weight reduction is the primary objective of a structural airframe, which concurrently ensures durability, stability, and strength. A structural airframe is meticulously crafted and assembled with weight, strength, and aerodynamic efficiency in mind. Engineers employ sophisticated materials, including titanium, to accomplish the intended structural characteristics of an aircraft while minimizing its overall mass. The structural airframe of an aerospace vehicle is vital to ensuring its efficacy and safety.

By manufacturing process

The global market is segmented into casting, powder metallurgy, machining, additive manufacturing, superplastic forming (SPF), and others. The casting segment is the highest contributor to the market. Casting is a prevalent manufacturing technique employed in the aerospace sector to fabricate intricately shaped metal components. The technique involves the introduction of molten metal into the cavity of a mold, followed by the subsequent solidification of the metal and the subsequent removal of the finished piece from the mold. In aerospace, casting is frequently utilized to generate complex shapes with desirable material properties. It is utilized to produce various aircraft and spacecraft components, including engine parts, airframe components, and other critical elements.

Market Size By Material Type

Market Size By Material Type
  • Titanium Alloys
  • Commercially Pure Titanium


  • List of key players in Aerospace Titanium Machining Market

    1. Kennametal
    2. Sandvik Coromant
    3. FPD Company
    4. Gould Alloys
    5. RTI International Metals
    6. Maniko
    7. Protolabs
    8. Dynamic Metal
    9. Ural Boeing Manufacturing
    10. Universal Metal
    11. Others.
    Aerospace Titanium Machining Market Share of Key Players

    Recent Developments

    • May 2023- Kennametal Inc. announced that Lockheed Martin's internal machining guide will recognize its HARVI™ solid carbide end mills as a preferred product. The resource, developed by the Operations Technology division of Lockheed Martin Aeronautics for internal operations and engineering, in collaboration with global supply-chain partners, identifies the optimal machining parameters and processes for aerospace components specific to their materials.
    • February 2023- CORE Industrial Partners ("CORE"), a private equity firm specializing in industrial services, manufacturing, and industrial technology, announced that CORE portfolio company Cadrex Manufacturing Solutions ("Cadrex") acquired D&R Machine Company ("D&R" or the "Company"), a provider of CNC precision machining solutions for the aerospace & defense market.

    Aerospace Titanium Machining Market Segmentations

    By Material Type (2021-2033)

    • Titanium Alloys
    • Commercially Pure Titanium

    By Applications (2021-2033)

    • Structural Airframes
    • Engines
    • Others

    By Manufacturing Process (2021-2033)

    • Casting
    • Machining
    • Powder Metallurgy
    • Additive Manufacturing
    • Superplastic Forming (SPF)
    • Others

    Frequently Asked Questions (FAQs)

    How big is the global market?
    The global aerospace titanium machining market size was valued at USD 3669.55 million in 2024.
    North America has the highest growth in the global market.
    Minipack-Torre S.p.A., Henkelmen, FUJI MACHINERY, FOCKE & C.O., IMA Group, MULTIVAC Group, Bosch Packaging Technology GmbH (Syntegon), Tetra Laval International S.A., OMORI MACHINERY CO. LTD., Coesia S.p.A., Bradman Lake Group, Foremost Fuji Corporation are the top players in the market.
    Growing Aerospace Industry and Increased Use of Titanium to Produce Lightweight Aircraft are the key drivers for the growth of the global market.
    The titanium alloys segment is the largest contributor to the market.


    We are featured on :